If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-20x-30=0
a = 7; b = -20; c = -30;
Δ = b2-4ac
Δ = -202-4·7·(-30)
Δ = 1240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1240}=\sqrt{4*310}=\sqrt{4}*\sqrt{310}=2\sqrt{310}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-2\sqrt{310}}{2*7}=\frac{20-2\sqrt{310}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+2\sqrt{310}}{2*7}=\frac{20+2\sqrt{310}}{14} $
| 7x6^2-20x-30=0 | | 4x-5=3/x | | 4x+31+5x+6+12x-4=180 | | 3/7x+1=1/4(x+2) | | x^2+6x+5=2x+1 | | 5x3.05=-7.55 | | 5xx3.05=-7.55 | | 2^5x+2=6^x | | 2k+294=360 | | 8x^2+4x+68=0 | | k=147*2 | | 0.3f(0.2f-1.1)=3.804 | | 5x/3.05=-7.55 | | 2(b+3)=30 | | k/7+1=3 | | 10a-2(11+6a-3)=0 | | 47=–3+8y | | 5b-2=-3b+34 | | 3x+8=7(x+1)-19 | | 2u+16=50 | | 3x+12+3x-2=40 | | 4x/5=x+3/6 | | t=-4.9t^2+12.5t+64.2 | | 1/8x+2/3=5/12 | | 2(5x-12)-10=-4 | | 3/4y-6=1/4y*10 | | 30=6x4x | | 6(3-2x)=-102 | | m-(7/10)=-11/5 | | 60=5/6xX | | 4x-84=108-2x | | -12(3x-1)+6=-2(12+10x)-10x |